第一章 预备知识
一、Python基础
1. 列表推导式与条件赋值
在生成一个数字序列的时候,在Python
中可以如下写出:
L = []
def my_func(x):
return 2*x
for i in range(5):
L.append(my_func(i))
L
[0, 2, 4, 6, 8]
事实上可以利用列表推导式进行写法上的简化:[* for i in *]
。其中,第一个*
为映射函数,其输入为后面i
指代的内容,第二个*
表示迭代的对象。
[my_func(i) for i in range(5)]
[0, 2, 4, 6, 8]
列表表达式还支持多层嵌套,如下面的例子中第一个for
为外层循环,第二个为内层循环:
[m+'_'+n for m in ['a', 'b'] for n in ['c', 'd']]
['a_c', 'a_d', 'b_c', 'b_d']
除了列表推导式,另一个实用的语法糖是带有if
选择的条件赋值,其形式为value = a if condition else b
:
value = 'cat' if 2>1 else 'dog'
value
'cat'
等价于如下的写法:
a, b = 'cat', 'dog'
condition = 2 > 1 # 此时为True
if condition:
value = a
else:
value = b
下面举一个例子,截断列表中超过5的元素,即超过5的用5代替,小于5的保留原来的值:
L = [1, 2, 3, 4, 5, 6, 7]
[i if i <= 5 else 5 for i in L]
[1, 2, 3, 4, 5, 5, 5]
2. 匿名函数与map方法
有一些函数的定义具有清晰简单的映射关系,例如上面的my_func
函数,这时候可以用匿名函数的方法简洁地表示:
my_func = lambda x: 2*x
my_func(3)
6
multi_para_func = lambda a, b: a + b
multi_para_func(1, 2)
3
但上面的用法其实违背了“匿名”的含义,事实上它往往在无需多处调用的场合进行使用,例如上面列表推导式中的例子,用户不关心函数的名字,只关心这种映射的关系:
[(lambda x: 2*x)(i) for i in range(5)]
[0, 2, 4, 6, 8]
对于上述的这种列表推导式的匿名函数映射,Python
中提供了map
函数来完成,它返回的是一个map
对象,需要通过list
转为列表:
list(map(lambda x: 2*x, range(5)))
[0, 2, 4, 6, 8]
对于多个输入值的函数映射,可以通过追加迭代对象实现:
list(map(lambda x, y: str(x)+'_'+y, range(5), list('abcde')))
['0_a', '1_b', '2_c', '3_d', '4_e']
3. zip对象与enumerate方法
zip
函数能够把多个可迭代对象打包成一个元组构成的可迭代对象,它返回了一个zip
对象,通过tuple
, list
可以得到相应的打包结果:
L1, L2, L3 = list('abc'), list('def'), list('hij')
list(zip(L1, L2, L3))
[('a', 'd', 'h'), ('b', 'e', 'i'), ('c', 'f', 'j')]
tuple(zip(L1, L2, L3))
(('a', 'd', 'h'), ('b', 'e', 'i'), ('c', 'f', 'j'))
往往会在循环迭代的时候使用到zip
函数:
for i, j, k in zip(L1, L2, L3):
print(i, j, k)
a d h
b e i
c f j
enumerate
是一种特殊的打包,它可以在迭代时绑定迭代元素的遍历序号:
L = list('abcd')
for index, value in enumerate(L):
print(index, value)
0 a
1 b
2 c
3 d
用zip
对象也能够简单地实现这个功能:
for index, value in zip(range(len(L)), L):
print(index, value)
0 a
1 b
2 c
3 d
当需要对两个列表建立字典映射时,可以利用zip
对象:
dict(zip(L1, L2))
{'a': 'd', 'b': 'e', 'c': 'f'}
既然有了压缩函数,那么Python
也提供了*
操作符和zip
联合使用来进行解压操作:
zipped = list(zip(L1, L2, L3))
zipped
[('a', 'd', 'h'), ('b', 'e', 'i'), ('c', 'f', 'j')]
list(zip(*zipped)) # 三个元组分别对应原来的列表
[('a', 'b', 'c'), ('d', 'e', 'f'), ('h', 'i', 'j')]
二、Numpy基础
1. np数组的构造
最一般的方法是通过array
来构造:
import numpy as np
np.array([1,2,3])
array([1, 2, 3])
下面讨论一些特殊数组的生成方式:
【a】等差序列:np.linspace
, np.arange
np.linspace(1,5,11) # 起始、终止(包含)、样本个数
array([1. , 1.4, 1.8, 2.2, 2.6, 3. , 3.4, 3.8, 4.2, 4.6, 5. ])
np.arange(1,5,2) # 起始、终止(不包含)、步长
array([1, 3])
【b】特殊矩阵:zeros
, eye
, full
np.zeros((2,3)) # 传入元组表示各维度大小
array([[0., 0., 0.],
[0., 0., 0.]])
np.eye(3) # 3*3的单位矩阵
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
np.eye(3, k=1) # 偏移主对角线1个单位的伪单位矩阵
array([[0., 1., 0.],
[0., 0., 1.],
[0., 0., 0.]])
np.full((2,3), 10) # 元组传入大小,10表示填充数值
array([[10, 10, 10],
[10, 10, 10]])
np.full((2,3), [1,2,3]) # 每行填入相同的列表
array([[1, 2, 3],
[1, 2, 3]])
【c】随机矩阵:np.random
最常用的随机生成函数为rand
, randn
, randint
, choice
,它们分别表示0-1均匀分布的随机数组、标准正态的随机数组、随机整数组和随机列表抽样:
np.random.rand(3) # 生成服从0-1均匀分布的三个随机数
array([0.92340835, 0.20019461, 0.40755472])
np.random.rand(3, 3) # 注意这里传入的不是元组,每个维度大小分开输入
array([[0.8012362 , 0.53154881, 0.05858554],
[0.13103034, 0.18108091, 0.30253153],
[0.00528884, 0.99402007, 0.36348797]])
对于服从区间a
到b
上的均匀分布可以如下生成:
a, b = 5, 15
(b - a) * np.random.rand(3) + a
array([6.59370831, 8.03865138, 9.19172546])
一般的,可以选择已有的库函数:
np.random.uniform(5, 15, 3)
array([11.26499636, 13.12311185, 6.00774156])
randn
生成了N(0,I)
的标准正态分布:
np.random.randn(3)
array([ 1.87000209, 1.19885561, -0.58802943])
np.random.randn(2, 2)
array([[-1.3642839 , -0.31497567],
[-1.9452492 , -3.17272882]])
对于服从方差为
sigma, mu = 2.5, 3
mu + np.random.randn(3) * sigma
array([1.56024917, 0.22829486, 7.3764211 ])
同样的,也可选择从已有函数生成:
np.random.normal(3, 2.5, 3)
array([3.53517851, 5.3441269 , 3.51192744])
randint
可以指定生成随机整数的最小值最大值(不包含)和维度大小:
low, high, size = 5, 15, (2,2) # 生成5到14的随机整数
np.random.randint(low, high, size)
array([[ 5, 12],
[14, 9]])
choice
可以从给定的列表中,以一定概率和方式抽取结果,当不指定概率时为均匀采样,默认抽取方式为有放回抽样:
my_list = ['a', 'b', 'c', 'd']
np.random.choice(my_list, 2, replace=False, p=[0.1, 0.7, 0.1 ,0.1])
array(['b', 'a'], dtype='<U1')
np.random.choice(my_list, (3,3))
array([['c', 'b', 'd'],
['d', 'a', 'd'],
['a', 'c', 'd']], dtype='<U1')
当返回的元素个数与原列表相同时,不放回抽样等价于使用permutation
函数,即打散原列表:
np.random.permutation(my_list)
array(['c', 'a', 'd', 'b'], dtype='<U1')
最后,需要提到的是随机种子,它能够固定随机数的输出结果:
np.random.seed(0)
np.random.rand()
0.5488135039273248
np.random.seed(0)
np.random.rand()
0.5488135039273248
2. np数组的变形与合并
【a】转置:T
np.zeros((2,3)).T
array([[0., 0.],
[0., 0.],
[0., 0.]])
【b】合并操作:r_
, c_
对于二维数组而言,r_
和c_
分别表示上下合并和左右合并:
np.r_[np.zeros((2,3)),np.zeros((2,3))]
array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
np.c_[np.zeros((2,3)),np.zeros((2,3))]
array([[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.]])
一维数组和二维数组进行合并时,应当把其视作列向量,在长度匹配的情况下只能够使用左右合并的c_
操作:
try:
np.r_[np.array([0,0]),np.zeros((2,1))]
except Exception as e:
Err_Msg = e
Err_Msg
ValueError('all the input arrays must have same number of dimensions, but the array at index 0 has 1 dimension(s) and the array at index 1 has 2 dimension(s)')
np.r_[np.array([0,0]),np.zeros(2)]
array([0., 0., 0., 0.])
np.c_[np.array([0,0]),np.zeros((2,3))]
array([[0., 0., 0., 0.],
[0., 0., 0., 0.]])
【c】维度变换:reshape
reshape
能够帮助用户把原数组按照新的维度重新排列。在使用时有两种模式,分别为C
模式和F
模式,分别以逐行和逐列的顺序进行填充读取。
target = np.arange(8).reshape(2,4)
target
array([[0, 1, 2, 3],
[4, 5, 6, 7]])
target.reshape((4,2), order='C') # 按照行读取和填充
array([[0, 1],
[2, 3],
[4, 5],
[6, 7]])
target.reshape((4,2), order='F') # 按照列读取和填充
array([[0, 2],
[4, 6],
[1, 3],
[5, 7]])
特别地,由于被调用数组的大小是确定的,reshape
允许有一个维度存在空缺,此时只需填充-1即可:
target.reshape((4,-1))
array([[0, 1],
[2, 3],
[4, 5],
[6, 7]])
下面将n*1
大小的数组转为1维数组的操作是经常使用的:
target = np.ones((3,1))
target
array([[1.],
[1.],
[1.]])
target.reshape(-1)
array([1., 1., 1.])
3. np数组的切片与索引
数组的切片模式支持使用slice
类型的start:end:step
切片,还可以直接传入列表指定某个维度的索引进行切片:
target = np.arange(9).reshape(3,3)
target
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
target[:-1, [0,2]]
array([[0, 2],
[3, 5]])
此外,还可以利用np.ix_
在对应的维度上使用布尔索引,但此时不能使用slice
切片:
target[np.ix_([True, False, True], [True, False, True])]
array([[0, 2],
[6, 8]])
target[np.ix_([1,2], [True, False, True])]
array([[3, 5],
[6, 8]])
当数组维度为1维时,可以直接进行布尔索引,而无需np.ix_
:
new = target.reshape(-1)
new[new%2==0]
array([0, 2, 4, 6, 8])
4. 常用函数
为了简单起见,这里假设下述函数输入的数组都是一维的。
【a】where
where
是一种条件函数,可以指定满足条件与不满足条件位置对应的填充值:
a = np.array([-1,1,-1,0])
np.where(a>0, a, 5) # 对应位置为True时填充a对应元素,否则填充5
array([5, 1, 5, 5])
【b】nonzero
, argmax
, argmin
这三个函数返回的都是索引,nonzero
返回非零数的索引,argmax
, argmin
分别返回最大和最小数的索引:
a = np.array([-2,-5,0,1,3,-1])
np.nonzero(a)
(array([0, 1, 3, 4, 5], dtype=int64),)
a.argmax()
4
a.argmin()
1
【c】any
, all
any
指当序列至少 存在一个 True
或非零元素时返回True
,否则返回False
all
指当序列元素 全为 True
或非零元素时返回True
,否则返回False
a = np.array([0,1])
a.any()
True
a.all()
False
【d】cumprod
, cumsum
, diff
cumprod
, cumsum
分别表示累乘和累加函数,返回同长度的数组,diff
表示和前一个元素做差,由于第一个元素为缺失值,因此在默认参数情况下,返回长度是原数组减1
a = np.array([1,2,3])
a.cumprod()
array([1, 2, 6], dtype=int32)
a.cumsum()
array([1, 3, 6], dtype=int32)
np.diff(a)
array([1, 1])
【e】 统计函数
常用的统计函数包括max, min, mean, median, std, var, sum, quantile
,其中分位数计算是全局方法,因此不能通过array.quantile
的方法调用:
target = np.arange(5)
target
array([0, 1, 2, 3, 4])
target.max()
4
np.quantile(target, 0.5) # 0.5分位数
2.0
但是对于含有缺失值的数组,它们返回的结果也是缺失值,如果需要略过缺失值,必须使用nan*
类型的函数,上述的几个统计函数都有对应的nan*
函数。
target = np.array([1, 2, np.nan])
target
array([ 1., 2., nan])
target.max()
nan
np.nanmax(target)
2.0
np.nanquantile(target, 0.5)
1.5
对于协方差和相关系数分别可以利用cov, corrcoef
如下计算:
target1 = np.array([1,3,5,9])
target2 = np.array([1,5,3,-9])
np.cov(target1, target2)
array([[ 11.66666667, -16.66666667],
[-16.66666667, 38.66666667]])
np.corrcoef(target1, target2)
array([[ 1. , -0.78470603],
[-0.78470603, 1. ]])
最后,需要说明二维Numpy
数组中统计函数的axis
参数,它能够进行某一个维度下的统计特征计算,当axis=0
时结果为列的统计指标,当axis=1
时结果为行的统计指标:
target = np.arange(1,10).reshape(3,-1)
target
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
target.sum(0)
array([12, 15, 18])
target.sum(1)
array([ 6, 15, 24])
5. 广播机制
广播机制用于处理两个不同维度数组之间的操作,这里只讨论不超过两维的数组广播机制。
【a】标量和数组的操作
当一个标量和数组进行运算时,标量会自动把大小扩充为数组大小,之后进行逐元素操作:
res = 3 * np.ones((2,2)) + 1
res
array([[4., 4.],
[4., 4.]])
res = 1 / res
res
array([[0.25, 0.25],
[0.25, 0.25]])
【b】二维数组之间的操作
当两个数组维度完全一致时,使用对应元素的操作,否则会报错,除非其中的某个数组的维度是
res = np.ones((3,2))
res
array([[1., 1.],
[1., 1.],
[1., 1.]])
res * np.array([[2,3]]) # 第二个数组扩充第一维度为3
array([[2., 3.],
[2., 3.],
[2., 3.]])
res * np.array([[2],[3],[4]]) # 第二个数组扩充第二维度为2
array([[2., 2.],
[3., 3.],
[4., 4.]])
res * np.array([[2]]) # 等价于两次扩充,第二个数组两个维度分别扩充为3和2
array([[2., 2.],
[2., 2.],
[2., 2.]])
【c】一维数组与二维数组的操作
当一维数组
np.ones(3) + np.ones((2,3))
array([[2., 2., 2.],
[2., 2., 2.]])
np.ones(3) + np.ones((2,1))
array([[2., 2., 2.],
[2., 2., 2.]])
np.ones(1) + np.ones((2,3))
array([[2., 2., 2.],
[2., 2., 2.]])
6. 向量与矩阵的计算
【a】向量内积:dot
a = np.array([1,2,3])
b = np.array([1,3,5])
a.dot(b)
22
【b】向量范数和矩阵范数:np.linalg.norm
在矩阵范数的计算中,最重要的是ord
参数,可选值如下:
ord | norm for matrices | norm for vectors |
---|---|---|
None | Frobenius norm | 2-norm |
'fro' | Frobenius norm | / |
'nuc' | nuclear norm | / |
inf | max(sum(abs(x), axis=1)) | max(abs(x)) |
-inf | min(sum(abs(x), axis=1)) | min(abs(x)) |
0 | / | sum(x != 0) |
1 | max(sum(abs(x), axis=0)) | as below |
-1 | min(sum(abs(x), axis=0)) | as below |
2 | 2-norm (largest sing. value) | as below |
-2 | smallest singular value | as below |
other | / | sum(abs(x)**ord)**(1./ord) |
matrix_target = np.arange(4).reshape(-1,2)
matrix_target
array([[0, 1],
[2, 3]])
np.linalg.norm(matrix_target, 'fro')
3.7416573867739413
np.linalg.norm(matrix_target, np.inf)
5.0
np.linalg.norm(matrix_target, 2)
3.702459173643833
vector_target = np.arange(4)
vector_target
array([0, 1, 2, 3])
np.linalg.norm(vector_target, np.inf)
3.0
np.linalg.norm(vector_target, 2)
3.7416573867739413
np.linalg.norm(vector_target, 3)
3.3019272488946263
【c】矩阵乘法:@
a = np.arange(4).reshape(-1,2)
a
array([[0, 1],
[2, 3]])
b = np.arange(-4,0).reshape(-1,2)
b
array([[-4, -3],
[-2, -1]])
a@b
array([[ -2, -1],
[-14, -9]])
三、练习
Ex1:利用列表推导式写矩阵乘法
一般的矩阵乘法根据公式,可以由三重循环写出,请将其改写为列表推导式的形式。
M1 = np.random.rand(2,3)
M2 = np.random.rand(3,4)
res = np.empty((M1.shape[0],M2.shape[1]))
for i in range(M1.shape[0]):
for j in range(M2.shape[1]):
item = 0
for k in range(M1.shape[1]):
item += M1[i][k] * M2[k][j]
res[i][j] = item
(np.abs((M1@M2 - res) < 1e-15)).all() # 排除数值误差
True
Ex2:更新矩阵
设矩阵 Numpy
高效实现。
Ex3:卡方统计量
设矩阵
请利用Numpy
对给定的矩阵
np.random.seed(0)
A = np.random.randint(10, 20, (8, 5))
Ex4:改进矩阵计算的性能
设
现有某人根据如下给定的样例数据计算Numpy
中的函数,基于此问题改进这段代码的性能。
np.random.seed(0)
m, n, p = 100, 80, 50
B = np.random.randint(0, 2, (m, p))
U = np.random.randint(0, 2, (p, n))
Z = np.random.randint(0, 2, (m, n))
def solution(B=B, U=U, Z=Z):
L_res = []
for i in range(m):
for j in range(n):
norm_value = ((B[i]-U[:,j])**2).sum()
L_res.append(norm_value*Z[i][j])
return sum(L_res)
solution(B, U, Z)
100566
Ex5:连续整数的最大长度
输入一个整数的Numpy
数组,返回其中严格递增连续整数子数组的最大长度,正向是指递增方向。例如,输入[1,2,5,6,7],[5,6,7]为具有最大长度的连续整数子数组,因此输出3;输入[3,2,1,2,3,4,6],[1,2,3,4]为具有最大长度的连续整数子数组,因此输出4。请充分利用Numpy
的内置函数完成。(提示:考虑使用nonzero, diff
函数)